Значение твердости стали. Измерение твердости металлов - методичка. дневной, вечерней и заочной форм обучения

Методы измерения твердости металлов. Одним из широко распространенных видов испытания металлов является определение твердости. Твердость металла можно определять прямыми и косвенными методами.

Прямые методы испытания на твердость состоят в том, что в образец вдавливают специальный твердый наконечник (из закаленной стали, алмаза или твердого сплава) различной формы (шарик, конус, пирамиду). После снятия нагрузки остается отпечаток, величина которого характеризует твердость образца.

При косвенных методах оцениваются свойства металла, пропорциональные его твердости.

Испытания на твердость могут быть статическими и динамическими. К первому виду относятся испытания методом вдавливания, ко второму - методом ударного вдавливания.

В зависимости от характера и способа приложения нагрузки твер­дость косвенно характеризует различные механические свойства метал­лов. Если наконечник вдавливается в образец, то твердость характеризует сопротивление пластической де­формации. Если наконечник цара­пает об-

разец, то твердость характеризует сопротивление разрушению. Твердость, определенная по отскоку наконечника, характеризует упругие свойства металла образца.

По значению твердости металла можно составить представление об уровне его свойств. Например, чем выше твердость, определенная вдав­ливанием наконечника, тем меньше пластичность металла, и наоборот.

Метод измерения твердости имеет ряд преимуществ перед другими методами механических испытаний металла: простота техники и быстрота испытаний, простота формы и небольшие размеры образцов, возможность проводить испытание непосредственно на изделии без его разрушения.

Твердость определяют на специальных приборах - твердомерах.

Твердомеры бывают стационарные и переносные. Принципиальное устройство твердомеров для всех методов испытаний на твердость одина­ково.

Основными узлами твердомеров являются станина, рабочий столик, наконечник (узел, состоящий из оправки и индентора), нагружающее уст­ройство, прибор для измерения величины деформации.

Общая схема испытания такова: деталь или образец помещают на рабочем столике, с помощью нагружающего устройства в образец вдавли­вают индентор и после снятия нагрузки определяют твердость.

В зависимости от цели испытания, свойств испытуемого металла, размеров образца выбирают форму, раз­мер и материал индентора, вели­чину и длительность приложения нагрузки.

Наиболее часто проводят определение твердости следующими ме­тодами: измерение твердости по Бринеллю - по ГОСТ 9012 - 59; измере­ние твердости по Роквеллу - по ГОСТ 9013 - 54; измерение твердости по Виккерсу - по ГОСТ 2999 - 75; изменение твердости методом ударного отпечатка - по ГОСТ 18661 - 73; измерение микротвердости вдавлива­нием алмазных наконечников - по ГОСТ 9450 - 76.


Существуют общие требования к подготовке образцов и проведе­нию испытаний:

1. Изготовление образцов и подготовка поверхности должны осуществляться способами, исключающими изменения свойств металла из-за нагрева или наклепа.

2. Поверхность образца должна быть чистой, без окислых пленок, следов ржавления или окалины, трещин и прочих дефектов.

3. Образцы должны быть определенной толщины. После нанесения отпечатка на обратной стороне образца не должно быть следов деформации.

4. Образец должен лежать на столике жестко и устойчиво. В процессе испытания образец не должен смещаться или прогибаться.

5. Прилагаемая нагрузка должна действовать перпендикулярно к поверхности образца.

6. Нагрузка должна прилагаться и возрастать плавно до заданного значения, а далее поддерживаться постоянной в течение определенного времени.

Измерение твердости по Бринеллю. При определении твердости методом Бринелля в испытуемый образец или изделие вдавливается в течение определенного времени металлический шарик (рис. 5). После снятия нагрузки на поверхности образца остается сферический отпечаток. Величина отпечатка зависит от твердости металла: чем тверже металл, тем меньше будет величина отпечатка. Число твердости по Бринеллю обозначается НВ.

Рис. 5. Схема расположения отпечатка при определении твердости методом Бринелля

Чтобы определить число твердости НВ (МПа или кгс/мм 2), надо величину приложенной нагрузки Р разделить на площадь отпечатка F :

,

где D - диаметр шарика, м (или мм);

d - диаметр отпечатка, м (или мм);

Чтобы не производить каждый раз вычисления, при определении числа твердости пользуются специально cоставленной таблицей (приложение к ГОСТ 9012- 59). Зная нагрузку, диаметры шарика и отпечатка, по этой таблице можно определить число твердости НВ.

Для испытания применяют шарики из закаленной стали или твер­дого сплава диаметром 2,5; 5,0 и 10 мм. Диаметр шарика выбирают в за­висимости от толщины испытуемого образца и его твердости: чем тоньше и тверже образец, тем меньше должен быть диаметр шарика. Обычно ис­пытание проводят на специально подготовленной горизонтальной пло­щадке образца.

Толщина испытуемого образца должна быть не меньше десятикрат­ной глубины отпечатка. Глубину отпечатка определяют пробным испытанием или, если известен уровень твердости, по формуле

где h - глубина отпечатка;

D - диаметр шарика;

НВ - число твердости.

Между временным сопротивлением и числом твердости HB существует следующая зависимость:

Для стали σ в = 0,34 HB;

Для медных сплавов σ в = 0,45 HB;

Для алюминиевых сплавов σ в = 0,35 HB.

Расстояние от центра отпечатка до края образца дол­жно быть не менее 2,5d ,а между центрами двух соседних отпечатков - не менее 4d .Диаметр отпечатка d измеряют при помощи лупы или отсчетного микроскопа (рис. 6) в двух взаимно перпендикулярных направлениях и определяют среднее арифметическое из двух определений.

В зависимости от твердости металла нагрузка на шарик может изменяться от 15,6 до 3000 кгс. Чтобы результаты испытаний были сопоставимы при любом диаметре взятого шарика, между нагрузкой и диаметром шарика должно выдерживаться соотношение: P = 2,5D 2 , Р = 10D 2 , P = = 30D 2 .

Длительность приложения нагрузки должна быть достаточной для прохождения деформации и возрастать с уменьшением твердости испытуемого металла от 10 до 30 и 60 с.

При выборе диаметра шарика D ,нагрузки Р , продолжительности выдержки под нагрузкой t и минимальной толщины образца руководствуются табл. 1.

Запись результатов испытания проводится следующим образом. Если испытание проводится шариком диаметром D = 10 мм под нагрузкой Р = 3000 кгс с выдержкой D = 10 с, то записывается число твердости с cимвoлoм НВ. Например, твердость стали 350 НВ. Если условия испытания иные, то это показывается соответствующими индексами. Например, число твердости 230 и испытание проводилось шариком диаметром D = 5,0 мм при нагрузке 750 кгс с выдержкой под нагрузкой 10 с. В этом случае результаты записываются так: НВ 5/750/10/230.

Рис. 6. Измерение диаметра отпечатка по шкале лупы

Таблица 1

Выбор параметров испытания при определении твердости

методом Бринелля

Твёрдость

Твёрдость - это способность материала сопротивляться проникновению в него другого, более твёрдого тела - индентора во всем диапазоне нагружения: от момента касания с поверхностью и до вдавливания на максимальную глубину. Существуют методы определения восстановленной и невосстановленной твёрдости.

Метод определения восстановленной твёрдости.

Твёрдость определяется как отношение величины нагрузки к площади поверхности, площади проекции или объему отпечатка. Различают поверхностную , проекционную и объемную твёрдость:

  • поверхностная твёрдость - отношение нагрузки к площади поверхности отпечатка;
  • проекционная твёрдость - отношение нагрузки к площади проекции отпечатка;
  • объёмная твёрдость - отношение нагрузки к объёму отпечатка.

Метод определения невосстановленной твёрдости.

Твёрдость определяется как отношение силы сопротивления к площади поверхности, площади проекции или объему внедренной в материал части индентора. Различают поверхностную , проекционную и объемную твёрдость:

  • поверхностная твёрдость - отношение силы сопротивления к площади поверхности внедренной в материал части индентора;
  • проекционная твёрдость - отношение силы сопротивления к площади проекции внедренной в материал части индентора;
  • объёмная твёрдость - отношение силы сопротивления к объёму внедренной в материал части индентора.

Твёрдость измеряют в трёх диапазонах: макро, микро, нано. Макродиапазон регламентирует величину нагрузки на индентор от 2 до 30 кН. Микродиапазон регламентирует величину нагрузки на индентор до 2 Н и глубину внедрения индентора больше 0,2 мкм . Нанодиапазон регламентирует только глубину внедрения индентора, которая должна быть меньше 0,2 мкм . Часто твердость в нанодиапазоне называют нанотвердостью (nanohardness) [неизвестный термин ] .

Измеряемая твердость, прежде всего, зависит от нагрузки, прикладываемой к индентору. Такая зависимость получила название размерного эффекта , в англоязычной литературе - indentation size effect . Характер зависимости твердости от нагрузки определяется формой индентора:

  • для сферического индентора - с увеличением нагрузки твердость увеличивается - обратный размерный эффект (reverse indentation size effect );
  • для индентора в виде пирамиды Виккерса или Берковича - с увеличением нагрузки твердость уменьшается - прямой или просто размерный эффект (indentation size effect );
  • для сфероконического индентора (типа конуса для твердомера Роквелла) - с увеличением нагрузки твердость сначала увеличивается, когда внедряется сферическая часть индентора, а затем начинает уменьшаться (для сфероконической части индентора).

Косвенно твердость также может зависеть от:

  1. Координационного числа - чем выше число, тем выше твёрдость.
  2. Природы химической связи
  3. От направления (например, минерал дистен - его твёрдость вдоль кристалла 4, а поперёк - 7)
  4. Гибкости - минерал легко гнётся, изгиб не выпрямляется (например, тальк)
  5. Упругости - минерал сгибается, но выпрямляется (например, слюды)
  6. Вязкости - минерал трудно сломать (например, жадеит)
  7. и ряда других физико-механических свойств материала.

Наиболее твёрдыми из существующих на сегодняшний день материалов являются две аллотропные модификации углерода - лонсдейлит , на 58 % превосходящий по твёрдости алмаз и фуллерит (примерно в 2 раза твёрже алмаза ). Однако практическое применение этих веществ пока маловероятно. Самым твёрдым из распространённых веществ является алмаз (10 единиц по шкале Мооса, см. ниже).

Методы измерения твёрдости

Прибор Польди

Методы определения твёрдости по способу приложения нагрузки делятся на: 1) статические и 2) динамические (ударные).

Для измерения твёрдости существует несколько шкал (методов измерения):

  • Метод Бринелля - твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка (причём площадь отпечатка берётся как площадь части сферы, а не как площадь круга (твердость по Мейеру)); размерность единиц твердости по Бринеллю МПа (кг-с/мм²). Число твердости по Бринеллю по ГОСТ 9012-59 записывают без единиц измерения. Твёрдость, определённая по этому методу, обозначается HB, где H = hardness (твёрдость, англ. ), B - Бринелль;
  • Метод Роквелла - твёрдость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Твёрдость, определённая по этому методу, является безразмерной и обозначается HR, HRB, HRC и HRA; твёрдость вычисляется по формуле HR = 100 (130) − kd , где d - глубина вдавливания наконечника после снятия основной нагрузки, а k - коэффициент. Таким образом, максимальная твёрдость по Роквеллу по шкалам A и C составляет 100 единиц, а по шкале B - 130 единиц.
  • Метод Виккерса - твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади отпечатка (причём площадь отпечатка берётся как площадь части поверхности пирамиды, а не как площадь ромба); размерность единиц твёрдости по Виккерсу кг-с/мм² . Твёрдость, определённая по этому методу, обозначается HV;
  • Методы Шора:
  • Дюрометры и шкалы Аскер - по принципу измерения соответствует методу вдавливания (по Шору). Фирменная и нац. японская модификация метода. Используется для мягких и эластичных материалов. Отличается от классического метода Шора некоторыми параметрами измерительного прибора, фирменными наименованиями шкал и инденторами .
Следует понимать, что хотя оба этих метода являются методами измерения твёрдости, предложены одним и тем же автором, имеют совпадающие названия и совпадающие обозначения шкал это - не версии одного метода, а два принципиально разных метода с разными значениями шкал, описываемых разными стандартами.

Методы измерения твёрдости делятся на две основные категории: статические методы определения твёрдости и динамические методы определения твёрдости.

Для инструментального определения твёрдости используются приборы, именуемые твердомерами. Методы определения твердости, в зависимости от степени воздействия на объект, могут относиться как к неразрушающим, так и к разрушающим методам.

Существующие методы определения твёрдости не отражают целиком какого-нибудь одного определённого фундаментального свойства материалов, поэтому не существует прямой взаимосвязи между разными шкалами и методами, но существуют приближенные таблицы, связывающие шкалы отдельных методов для определённых групп и категорий материалов. Данные таблицы построены только по результатам экспериментальных тестов и не существует теорий, позволяющих расчетным методом перейти от одного способа определения твердости к другому.

Конкретный способ определения твёрдости выбирается исходя из свойств материала, задач измерения, условий его проведения, имеющейся аппаратуры и др.

В СНГ стандартизированы не все шкалы твёрдости.

Нормативные документы

  • ГОСТ 8.062-85 «Государственная система обеспечения единства измерений. Государственный специальный эталон и государственная поверочная схема для средств измерений твердости по шкалам Бринелля»
  • ГЭТ 33-85 «Государственный специальный эталон единиц твердости по шкалам Бринелля»
  • ГОСТ 24621-91 (ISO 868-85) «Определение твёрдости при вдавливании с помощью дюрометра (твёрдость по Шору)».
  • ГОСТ 263-75 «Резина. Метод определения твёрдости по Шору А».
  • ГОСТ 23273-78 «Металлы и сплавы. Измерение твердости методом упругого отскока бойка (по Шору)».
  • ISO 2815 «Paints and varnishes - Buchholz indentation test».
  • DIN 53153 «Buchholz hardness».
  • ISO 14577 Metallic Materials. Instrumented indentation test for hardness and materials parameters. Part 1: Test method.

Примечания

Ссылки

  • Сравнительная таблица твёрдостей в разных шкалах. (Прим.: В таблице шкала Шора соответствует методу отскока.)

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Твёрдость" в других словарях:

    У этого термина существуют и другие значения, см. Твёрдость (значения). Твёрдость (также твёрдость характера, твёрдость воли) черта характера, характеризующаяся последовательностью и упорством в достижении целей или отстаивании взглядов.… … Википедия

    У этого термина существует и другое значение, см. Твёрдость по Шору. При этом следует понимать, что хотя в другом значении этот метод также является методом измерения твёрдости, оба метода предложены одним и тем же автором, имеют совпадающие… … Википедия

    твёрдость - и; ж. 1) к твёрдый 2), 3), 4), 5), 6), 7), 8), 9) Твёрдость древесины. Твёрдость духа. Твёрдость воли, характера, убеждений. Твёрдость памяти. Твёрдость решения. Твёрдость движений … Словарь многих выражений

    У этого термина существует и другое значение, см. Твёрдость по Шору. При этом следует понимать, что хотя в другом значении этот метод так же является методом измерения твёрдости, оба метода предложены одним и тем же автором, имеют совпадающие… … Википедия

    твёрдость по Мартенсу - склерометрическая твёрдость твёрдость по склероскопу — Тематики нефтегазовая промышленность Синонимы склерометрическая твёрдостьтвёрдость по склероскопу EN… … Справочник технического переводчика

    Сопротивление металлов вдавливанию. Т. м. не является физической постоянной, а представляет собой сложное свойство, зависящее как от прочности и пластичности, так и от метода измерения. Т. м. характеризуется числом твёрдости. Наиболее… …

    Твёрдость по Бринеллю - Бринелля метод [по имени шведского инженера Ю.А.Бринелля (J.A.Brinell)] способ определения твёрдости материалов вдавливанием в испытываемую поверхность стального закалённого шарика диаметром 2,5; 5 и 10 мм пр нагрузке P от 625 H до 30 кН. Число… … Металлургический словарь

    Твёрдость по Виккерсу - Виккерса метод [по названию английского военно промышленного концерна Виккерс (Vickers Limited)] способ определения твёрдости материалов вдавливанием в поверхность образца или изделия алмазного индентора имеющего форму правильной четырёхгранной … Металлургический словарь

    Твёрдость по Роквеллу - Роквелла метод [по имени американского металлурга С.Роквелла (S.Rockwell), разработавшего этод метод] способ определения твёрдости материалов (главным образом металлов) вдавливанием в испытываемую поверхность алмазного индентора с углом при… … Металлургический словарь

    Свойство минералов оказывать сопротивление проникновению в них др. тел. Твёрдость важный диагностический и типоморфный признак минерала, функция его состава и структуры, которые в различной мере отражают условия минералообразования. Т. м … Большая советская энциклопедия

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра физического металловедения

Измерение твердости металлов

Методические указания к лабораторным работам

для студентов специальностей 150105, 150702

Ю. С. Шатов,

И. П. Горбунов,

А. Г. Гвоздев

Липецк – 2006

Шатов, Ю.С. Измерение твердости металлов. Методические указания к лабораторным работам для студентов специальностей 150105, 150702. /Ю.С. Шатов, И.П. Горбунов, А.Г. Гвоздев. – Липецк: ЛГТУ, 2006. – 33 с.

Предназначены для студентов 3 курса специальностей 150105, 150702. В методических указаниях приведена методика работы на твердомерах. Указывается цель каждой работы; сообщаются теоретические сведения, необходимые для выполнения эксперимента, приводятся схемы приборов; рассматривается порядок выполнения работ и дается форма отчета. Даны варианты индивидуальных заданий студентам для определения твердости металлов.

Ил. 5. Табл. 7. Библиогр.: 6 назв. Приложений 2.

Методические указания утверждены на заседании кафедры физического металловедения 15 сентября 2006 г., протокол № 1

Рецензент – В.В.Логунов

© Липецкий государственный

технический университет, 2006

Общие указания

Цель работы:

    Освоить методику измерения твердости на приборах Бринелля, Роквелла, Виккерса и микротвердомере.

    Научиться правильно выбирать прибор, нагрузку и наконечник при испытаниях твердости различными методами и определять твердость выданных образцов.

    Уметь измерять твердость отдельных фаз и структурных составляющих.

Твердость определяет способность металла сопротивляться деформации на поверхности образца или изделия.

Испытания на твердость широко применяется в лабораторных и заводских условиях для характеристики механических свойств металлов и сплавов.

Твердость металлов измеряют при помощи воздействия на поверхность изделий наконечником, изготовленного из твердого материала (закаленная сталь, алмаз и др.) и имеющего форму шарика, конуса, пирамиды или иглы. По характеру воздействия наконечника различают несколько способов измерения твердости: а) метод вдавливания; б) метод отскока; в) метод царапания.

Твердость, определенная вдавливанием, характеризует сопротивление металла пластической деформации.

Твердость, определенная по отскоку, характеризует упругие свойства. Твердость, определенная царапанием, сопротивление разрушению. Таким образом, твердость является специфическим свойством металла и при испытаниях на твердость могут измеряться упругие свойства металлов, сопротивление пластическим деформациям, сопротивление разрушению и ар. Широкое применение испытаний на твердость в практике объясняется тем, что они не требует длительного времени, специальных сложных образцов, могут проводиться на готовых изделиях без их разрушения и позволяют по эмпирическим соотношениям судить о других механических свойствах металла. Выбор формы, размеров наконечника и величины нагрузки зависит от целей испытания, структуры, ожидаемых свойств, состояний поверхности и размеров испытуемого образца.

Если металл имеет гетерогенную структуру с крупными выделениями отдельных структурных составляющих, различных по свойствам (например, серый чугун, подшипниковые сплавы), то для измерения твердости выбирают шарик большого диаметра.

При испытаниях металлов с высокой, твердостью (например, закаленная сталь) применяют алмазный конус при снижении общей нагрузки (во избежание образования трещин в образце). Однако значительное снижение нагрузки нежелательно т.к. приведет к резкому уменьшению деформируемого объема и может дать значения, не характерные для основной массы металла.

Измерение микротвердости имеет целью определить плотность отдельных зерен, фаз, структурных составляющих и поверхностных слоев металла при его химико-термической обработке. В этом случае объем, деформируемый вдавливанием, должен быть меньше объема измеряемого зерна, поэтому прилагаемая нагрузка выбирается небольшой.

Значительное влияние на результаты испытаний твердости оказывает состояние поверхности материала. Если поверхность неровная – криволинейная или с выступами – то отдельные участки в различной степени оказывает сопротивление вдавливанию, что приводит к ошибке при измерении твердости.

Поэтому, чем меньше нагрузка, тем тщательнее готовится поверхность. Она должна представлять шлифованную горизонтальную площадку, а для измерения микротвердости и полированную. Измеряемая поверхность должна быть установлена горизонтально, т.е. перпендикулярно действию нагрузки. Противоположная сторона образца должна быть зачищена и не иметь окалины, т.к. последняя при нагружении сминается, что искажает результаты измерения. Метод вдавливания твердого наконечника получил наибольшее распространение в практике испытаний металлов. К этому методу относятся методы Бринелля, Роквелла, Виккерса. Измерение твердости этими методами стандартизированы и устанавливаются ГОСТами:

Бринелля – ГОСТ 9012 – 59, Роквелла – ГОСТ 9013 – 59, Виккерса – ГОСТ 2999 – 59.

На рис. 1 показан диапазон значений твердости этих трех принципиально одинаковых методов, основанных на статическом вдавливании твердого наконечника.

Рис. 1. Диапазон значений твердости

Методические указания по измерению твердости на приборах Бринелля, Роквелла, Виккерса и микротвердомере ПМТ – 3

Общие сведения о методах испытания твердости на приборах Бринелля и Роквелла описано в учебных пособиях , с которыми студент должен подробно ознакомиться при подготовке к данной работе.

Твердость по Бринеллю – НВ, Н/м 2 .

При измерении твердости на приборе Бринелля студент должен руководствоваться следующими советами:

    Прежде чем приступить к испытанию на твердость, необходимо правильно подобрать по табл. 2 нагрузку (Р) и диаметр шарика (Д) исходя из материала и толщины образца, ГОСТ 9012 – 59. Нагрузку выбирают так, чтобы соблюдался закон подобия

Р/Д 2 = const (1)

В этом случае возможно сравнение твердости, полученной при различном диаметре шариков. Минимальная толщина испытуемого образца должна быть не менее десятикратной глубины отпечатка. На обратной стороне испытуемого образца после вдавливания шарика не должно быть следов деформации.

    Чем больше диаметр шарика, тем выше точность в определении твердости.

    Твердость материала при измерении по Бринеллю не должна превышать 4500 МН/м 2 , т.к. для вдавливания используется стальной закаленный шарик с твердостью НВ = 6000 МН/м 2 и при испытании более твердых металлов он будет деформироваться сам.

    Продолжительность выдержки образца строго постоянна и устанавливается перед измерением от 10 до 60 секунд (согласно табл.2) в зависимости от материала.

    Диаметр отпечатка (d), полученного после вдавливания, измеряется при помощи специальной лупы с точностью до 0,05 мм. При этом для лучшей освещенности отпечатка окно лупы располагают в направлении к источнику света.

    Значение твердости находят из таблиц или рассчитывает по формуле Н/м 2

    Поверхность испытуемого образца должна быть свободна от окалины и других посторонних веществ, при этом поверхность обрабатывается в виде плоскости так, чтобы края отпечатка были отчетливо видны при измерении его диаметра.

    Расстояние от центра отпечатка до края образца должно быть больше или равно 2,5 d,. а между центрами двух соседних отпечатков – больше или равно 4 d.

    Диаметры отпечатков (d) должны находиться в пределах

.

В случае несоблюдения этого условия испытание признается неверным и должно быть повторено с применением соответствующей нагрузки.

Порядок измерения твердости на приборе Бринелля

После того, как подобраны нагрузка, диаметр шарика и установлено время выдержки, испытуемый образец помещают на столик и при помощи маховичка приводят в соприкосновение с шариком до упора, создавая этим предварительную нагрузку в 1000 Н. Нажатием кнопки включают электродвигатель. Нагружение образца, выдержка и снятие нагрузки осуществляются автоматически. Длительность выдержки сигнализируется зажиганием лампочки. После отключения электродвигателя столик опускают и измеряют полученный отпечаток специальной лупой. Диаметр отпечатка замеряют в двух взаимно перпендикулярных направлениях и берут среднее значение. Зная диаметр отпечатка и приложенную нагрузку, по табл. 1 находят величину твердости испытуемого образца.

Твердость по Роквеллу – HRB , Н R А, Н R С, HRF

При измерении твердости на приборе Роквелла студент должен руководствоваться следующими советами:

    Испытания твердости на этом приборе могут производиться вдавливанием закаленного шарика (D =I,588 мм), алмазного конуса. При этом алмазный конус применяется для испытания твердых металлов (НВ – 2500 МН/м 2).

    В зависимости от типа индентора и выбранной нагрузки измерения твердости проводят по шкалам A,B,C,F. Полученное значение твердости является величиной безразмерной и выражается в единицах данной шкалы соответственно HRA, HRB, HRC, HRF (см. табл. 3).

    Прибор измеряет глубину отпечатка. Каждое деление шкалы индикатора соответствует глубине вдавливания (h) в 0,002 мм, поэтому, чем меньше h, тем больше твердость.

    Соотношение между твердостью и глубиной вдавливания определяется выражениями

для алмазного конуса
(3)

для шарика
(4)

    Перед началом испытания необходимо выбрать шкалу измерения, т.е. нагрузку, шкалу отсчета и индентор (шарик или конус). Шкалы А и С применяет для измерения закаленной стали, причем, когда требуется измерить твердость в поверхностном слое, например, после химико-термической обработки, после закалки ТВЧ, нагрузку снижают до 500 Н, т.е. использует для измерения шкалу А. Для определения твердости отожженной и нормализованной стали применяют шкалу В, нагрузку 1000 Н. Дня цветных металлов, имеющих малую твердость, измерения проводят по шкале F. Нагрузка в этом случае снижена до 500 Н, чтобы уменьшить глубину проникновения стального шарика.

    Поверхность испытуемого образца должна быть очищена шлифовкой от окалины и других посторонних веществ.

    Перпендикулярность приложения нагрузки обеспечивается за счет создания параллельности опорных поверхностей образца.

    Минимальная толщина образца должна бить не меньше восьмикратной глубины внедрения наконечника после снятия основной нагрузки. На обратной стороне образца не должно быть заметно после измерения твердости следов деформации. Расстояние от края образца или между соседними отпечатками должно быть не менее 3 мм.

    Отсчет результатов измерения твердости производится в целых делениях шкалы индикатора с точностью 0,5 единицы шкалы. За число твердости принимается результат отдельного измерения. Причем на каждом образце должно быть произведено не менее трех измерений.

Порядок измерения твердости на приборе Роквелла

После подготовки поверхности образца и выбора шкалы устанавливается соответствующая нагрузка и индентор (шарик или алмазный конус). Образец помещают на столик прибора и при помощи маховичка приводят в соприкосновение с наконечником, создавая предварительную нагрузку в 100 Н, что отмечается на циферблате установкой маленькой стрелки против красной точки. При этом большая стрелка должна занять вертикальное положение, указывая вверх с отклонением ±5 делений шкалы от вертикали. Если отклонение стрелки превышает 5 делений, предварительная нагрузка должна быть снята, а измерение твердости произведено в другой точке образца.

Затем совмещает большую стрелку с нулем черной шкалы (независимо от выбранной шкалы измерения) и нажатием на рычаг дают основную нагрузку.

После полной остановки движения стрелки (через 2–3 с) производится отсчет твердости по шкале индикатора. Необходимо помнить, что при измерении алмазным конусом отсчет твердости производится по черной шкале, а при измерении стальным шариком – по красной шкале. Несмотря на ряд недостатков метода Роквелла: условность величины определяемой твердости, малая точность измерения этот метод широко применяется для массового контроля. Причиной этого является ряд достоинств метода:

    Быстрое определение твердости благодаря автоматизации приборов.

    Возможность определения твердости материалов с НВ > 500 ед.

    Возможность измерения твердости на малых и тонких образцах.

Твердость по Роквеллу HRA, HRB, HRC, HRF может быть переведена в твердость по Бринеллю при помощи таблицы (см. табл. 4), составленной на основании экспериментальных данных

Метод Виккерса

При измерении твердости по Виккерсу согласно ГОСТ 2999 – 59 в испытуемый металл вдавливается четырехгранная алмазная пирамида с углом при вершине 135°. Для испытания могут применяться нагрузки 50, 100, 200, 300, 500, 1000 и 1200 Н. Отпечаток получается в виде квадрата. При помощи микроскопа, находящегося на приборе, измеряется диагональ отпечатка. Твердость по Виккерсу HV определяют как удельное давление, приходящееся на единицу поверхности отпечатка Н/м 2

(5)

d – длина диагонали отпечатка, мм 2 .

Числа твердости по Бринеллю и Виккерсу имеют одинаковую размерность, а для металлов с твердостью до 450 ед. они одинаковы.

Измерение твердости алмазной пирамидой дает более точные значения для металлов с высокой твердостью, чем измерения шариком или конусом, так как диагонали отпечатка достаточно велики даже при малой глубине отпечатка. При вдавливании пирамиды соотношение между диагоналями получающегося отпечатка при изменении нагрузки остается постоянным, что позволяет в широких пределах менять нагрузку. Величину нагрузки выбирают в зависимости от целей исследования, толщины и твердости исследуемого образца. Продолжительность выдержки под нагрузкой составляет: для черных металлов 10–15 с, для цветных металлов 30–60 с.

Прибор Виккерса (рис.2) снабжен рычажным устройством 1 для нагружения алмазной пирамиды 5, специальным микроскопом 6 для измерения диагоналей отпечатка, а также грузовым приводом 7.

Поверхность образцов для определения твердости по Виккерсу предварительно тщательно отшлифовать наждачной бумагой тонкого номера или отполировать. Толщина исследуемого образца должна быть не меньше, чем 1,5 диагонали отпечатка.

На приборе Виккерса можно измерять твердость мягких металлов и очень твердых сплавов и, кроме того, твердость в тонких поверхностных слоях, например при обезуглероживании, поверхностном наклепе, химико-термической обработке и т.д.

Однако каждое определение по Виккерсу занимает сравнительно много времени и требует тщательной подготовки поверхности образца, что является основным недостатком этого метода, препятствующим широкому применению его в цеховых условиях.

Порядок измерения твердости по Виккерсу

    Определяют необходимую величину нагрузки в зависимости от материала и Форму испытуемого изделия, пользуясь таблицей 5.

    Образец помещается на столике 4, установленном на винте 3, который перемещается вращением маховичка 2 до тех пор, пока не произойдет соприкосновение алмазной пирамида о поверхность образца.

    Включается рукоятка 1, и нагрузка системой рычагов передается на образец.

    Отводят изделие от соприкосновения с алмазным наконечником поворотом маховика против часовой стрелки и, поворачивая головку микроскопа вправо до упора, совмещает объектив микроскопа с отпечатком.

    Отпечаток фокусируют и измеряют величину диагоналей. Для этого вращением винта подводят к краю диагонали нулевую отметку шкалы, а затем, вращая микровинт, подводят к противоположному концу диагонали подвижную линию. При отсчете пользуются шкалой микроскопа, одно деление которой равно 0,1 мм, и микровинтом, одно деление которого на лимбе соответствует 0,001 мм при увеличении в 100 раз. Для измерения второй диагонали поворачивают головку микроскопа на 90° – по часовой стрелке. После замера двух диагоналей определяет среднее значение d.

    Пользуясь таблицей, по значению d определяют твердость по Виккерсу (HV) или находят ее по формуле (5).

Метод измерения микротвердости

При определении микротвердости четырехгранная алмазная пирамида (с углом между противоположными гранями при вершине 135°) вдавливается в испытуемый материал под очень небольшой нагрузкой от 0,05 до 5 Н. Число твердости выражается в величинах твердости Н и определяется по формуле (5).

Числа твердости согласно ГОСТ 9450 – 60 обозначают символом Н с указанием в индексе величины нагрузки в граммах (например, H 50 = 220 означает, что число микротвердости 220 получено при нагрузке 0,5 Н).

Испытание на микротвердость применяют для контроля качества материала очень мелких деталей, а также для определения твердости структурных составлявших, твердости покрытий и весьма тонких поверхностных слоев. Поверхность образца для определения микротвердости подготавливают так же, как и для микроисследования. Полирование рекомендуется электролитическое во избежание наклепа в тонком поверхностном слое. Для определения микротвердости применяют прибор ПМТ – 3. Это вертикальный микроскоп 1 с нижним положением столика, который

Рис. 2. Прибор Виккерса

Рис. 3. Общий вид прибора ПМТ – 3

Это вертикальный микроскоп 1 с нижним положением столика, который имеет два сменных объектива с увеличением в 487 и 130 раз (обычно пользуются увеличением в 487) и окуляр – микрометр 4 для измерения диагонали отпечатков. Вращением столика 2 выбранное место на шлифе 3 подводят под индентор – пирамиду. Принцип измерения твердости такой же, как и по Виккерсу, только пирамида отличается более высокой точностью изготовления. На рис. 3 показан общий вид прибора ПМТ – 3.

Выбор нагрузки зависит от задачи измерения. Центр отпечатка должен быть удален от края шлифа или от края соседнего отпечатка не менее чем на две диагонали отпечатка. Если отпечаток получен слишком близко к краю, то вдавливание индентора облегчается и поэтому значение твердости оказывается заниженным. Если первый отпечаток расположен слишком близко от второго, то второй отпечаток будет находиться в зоне, уже наклепанной от первого вдавливания, поэтому твердость получается завышенной.

При малой нагрузке велика относительная погрешность в измерении отпечатка и сильнее сказывается качество шлифа, поэтому желательно брать наибольшую нагрузку.

Вместо определения числа твердости по формуле обычно пользуется таблицами, рассчитанными для нагрузок 0,2; 0,5; 1 и 2 Н. Но если нужно измерить твердость отдельного зерна, приходится снижать нагрузку, пока отпечаток не окажется настолько малым, чтобы до краев зерна оставалось не менее двух диагоналей. Даже отпечаток, далеко отстоящий от видимой границы зерна, может давать завышенное (или заниженное) значение твердости из–за того, что под ним на небольшой глубине под поверхностью шлифа залегает другая фаза (более твердая или более мягкая). Индентор "упирается" в нее или, наоборот, "проваливается" сквозь твердую корку в мягкую подложку. Поэтому разброс измеренных значений микротвердости, как правило, гораздо больше, чем при обычных измерениях твердости. Измерения микротвердости имеют ценность только при правильной статистической обработке диагонального числа размеров.

Среднее значение микротвердости Н вычисляем по формуле (6), среднеквадратичные значения S А – по формуле (7)

(6)

где n – число измерений,

Н i – текущее измерение.

Для возможности обработки полученных данных на ЭВМ производили преобразования

число степеней свободы

где
– дисперсия;

– дисперсия измерений структурной составляющей А;

– дисперсия измерений структурной составляющей B.

Критерий Стьюдента подсчитываем по формуле

По значениям и находят из таблицы 6 значение Р – вероятности из того, что действительные твердости H 1 и H 2 одинаковы. Величина Р = 0,9 означает, что с вероятностью более 90 % значения микротвердости первого и второго образцов должны совпадать. Малые значения Р указывают на существование достоверной разницы в твердости.

Порядок замера микротвердости

Перед измерением микротвердости необходимо:

    Подготовить поверхность исследованного образца так же, как при микроструктурном анализе (шлифовка – полировка – травление),

    Определить цену деления окуляр – микрометра (см. работу “Количественный анализ”).

    Подобрать нагрузку в зависимости от размера к предполагаемой твердости.

    Закрепить шлиф к неметаллической пластине с помощью ручного пресса и пластилина строго параллельно горизонтальной плоскости предметного столика.

После этого приступают к измерениям.

      Пластину со шлифом устанавливают на столике.

      Перемещением столика микровинтами подводят выбранное для укола место под перекрестием окуляра.

      Устанавливают барабанчик окулярного микрометра 7 в нулевое положение.

      Поворачивают столик до упора (делать плавно), при этом образец располагается под нагрузкой.

      Нагружают образец медленным (10–15 с) поворотом рукоятки арретира индентора 4 и делают выдержку 5 с., после чего рукоятку арретира возвращают в исходное положение. Каждый раз, прежде чем вращать столик, необходимо убедиться, что алмазная пирамида поднята. Внимание! Вращая столик при опущенном инденторе (наконечнике), можно сломать алмаз.

      Сняв нагрузку, столик возвращают вращением в исходное положение, т.е. под микроскоп. Если отпечаток значительно удален от перекрестия (см. рис. 4. (1)), винтами 9 (рис. 3) осторожно смещают изображение отпечатка в перекрестие.

      Микровинтом 7 перемещают перекрестие из положения 1 в положение 2 (рис. 4) и на лимбе микровинта 7 определяют длину диагонали отпечатка в делениях лимба d дел.

Результаты измерений заносят в таблицу. Величину диагонали отпечатка в микронах определяют по формуле с учетом найденной ранее цены деления

d мкм =
d дел.

Рис. 4. Приемы последовательного измерения диагонали отпечатков на приборе ПМТ–3 окуляр – микрометром АМ9–2 (АМ9–1)

Рис. 5. График для определения микротвердости без пересчета

Сделав перевод каждого измеренного значения диагонали в твердость, находят среднее значение твердости (отдельно дет каждого измерения). Поскольку зависимость твердости от длины диагонали нелинейная, нельзя вычислять сначала среднюю диагональ, а потом находить по ней твердость. Для ускорения работы рекомендуется построить на миллиметровке, используя формулу (5), график в координатах d дел – твердость и из него находить все значений твердости.

Методика работы

В этой работе студенты знакомятся с техникой определения твердости по Бринеллю, Роквеллу, Виккерсу и микротвердости на приборе ПМТ – З и приобретают навык для того, чтобы при выполнении других работ они могли определять твердость самостоятельно. Кроме, того, студенты знакомятся с устройством прессов Бринелля, Роквелла, Виккерса, прибора ПМТ – 3 и с принципом их работы.

Задание на определение твердости методом Бринелля и Роквелла

Студент изучает индивидуальную задачу (см. приложение 1) и решает ее самостоятельно. Прежде чем начать испытания студент выясняет, какие из образцов надо испытать по Бринеллю и какие по Роквеллу.

    Измерить твердость на образцах, предварительно измерив штангенциркулем толщину образцов.

    Пользуясь табл.2, выбрать, диаметр шарика и нагрузку.

    При испытании по Роквеллу необходимо установить, по какой шкале надо производить измерение твердости (по шкале А, В, С и F), пользуясь при этом табл. 3. Измерить твердость образца по Бринеллю и Роквеллу и сопоставить ее.

    Твердость по Бринеллю определить по таблице и рассчитать по формуле (2). Сопоставить полученные результаты. Диаметр отпечатка замерить в двух перпендикулярных направлениях и брать среднее значение.

    Твердость по Роквеллу определить из среднего значения трех измерений.

    Определить предел прочности и предел выносливости, пользуясь табл.8.

    Все полученные результаты занести в таблицы.

Задание на определение твердости по Виккерсу

На приборе могут работать одновременно не более 2–3 студентов. Для измерения твердости по Виккерсу образцы шлифуют и полируют. Испытанию на HV подвергаются образцы различных марок углеродистой или легированной стали, проведшие термическую обработку (отжиг, нормализацию, закалку, отпуск).

    Провести испытания на твердость различных марок углеродистой стали 20, 35, 45, У7, У8, У12 в отожженном состоянии. Сделать вывод о влиянии содержания углерода на твердость стали. Объяснить полученные результаты в связи с изменением структуры.

    Провести испытания стали 45, У8 в нормализованном, закаленном и отпущенном состояниях. Сделать вывод о влиянии термообработки на свойства стали.

    Один из отожженных образцов испытать по Бринеллю и Роквеллу, сопоставить, числа твердости, полученные по Виккерсу, по Бринеллю и Роквеллу. Аналогичное задание по пунктам 1, 2, 3 по указанию преподавателя может быть выполнено для легированных марок сталей.

    При измерении твердости по Виккерсу на каждом образце делается 10–15 отпечатков.

    Полученные результаты замеров занести в таблицу.

Задание на определение микротвердости

На одном приборе ПМТ – 3 могут работать одновременно не более 2–3 студентов.

    Измерить микротвердость образцов в соответствии с индивидуальным заданием (см. приложение 2).

    На шлифе измеряют твердость различных фаз или структурных составляющих. Если это углеродистая сталь (например, ст.45), то определяют твердость феррита и перлита. Студент делает по 15 отпечатков на каждой структурной составляющей.

    Каждый студент вычисляет среднее значение H, а также все внесенные в табл. 7 величины (отдельно для каждой фазы).

    Из 30–45 измеренных значений микротвердости перлита и феррита с интервалом в 10 ед. строят гистограмму распределения микротвердости для каждой структурной составляющей.

    С помощью формул (8), (9), (10) и табл. 6 проверяют, насколько достоверно найденное различие в твердости феррита и перлита, если:

    1. использовать по 3 замера, твердости каждой составляющей,

      использовать 10 замеров,

      использовать 20, 30, 45 замеров (объединить данные двух – трех студентов).

Полученные результаты изобразить графически.

Форма отчета

Студент представляет письменный отчет о работе, в котором должны быть приведены:

    Краткое описание определения твердости по Бринеллю, Роквеллу, Виккерсу и микротвердости с изложением теоретических положений и формул.

    Схема одного из приборов c указанием назначений основных деталей.

    Письменное обоснование выбора прибора и условий испытаний для решения индивидуальной задачи.

    Результаты испытаний в виде таблицы и графики с объяснением причин изменения твердости в зависимости от вида термической обработки.

    Кроме решения индивидуальной задачи каждый студент выполняет дополнительную работу, указанную в заданиях по определению твердости на приборах Бринелля, Роквелла, Виккерса и ПМТ – 3, что должно найти отражение в отчете.

Библиографический список

1. Гвоздев А.Г. Лабораторный практикум по материаловедению. Учебное пособие [Текст] / А.Г. Гвоздев. Липецк: ЛГТУ, 2002.

2. Лившиц Б.Г. Металлография [Текст] / Б.Г. Лившиц. М.: Металлургия, 1971.

3. Захаров A.M. Диаграммы состояния двойных и тройных систем [Текст] / A.M. Захаров. М.: Металлургия, 1978.

4. Кример Б.И. Лабораторный практикум по металлографии и физическим свойствам металлов и сплавов [Текст] / Б.И Кример, Е.В. Панченко, Л.А. Шишко, В.Н. Николаева, Ю.С. Авраамов. М.: Металлургия, 1966.

5. Панченко Е.В. Лаборатория металлографии [Текст] / Е.В. Панченко, Ю.А. Скаков, Б.И. Кример, П.П. Арсентьев, К.В. Попов, М.Я. Цвилинг. М.: Металлургия, 1965.

6. Штремель М.А. Лабораторный практикум по спецкурсу «Прочность сплавов». Часть 1. [Текст] / М.А. Штремель. М.: Металлургия, 1968.

Таблица 1

Числа твердости по Бринеллю, НВ (МН/м 2 ∙× 10 -1)

Диаметр шарика 10 мм

Диаметр шарика 5 мм

Диаметр шарика 2,5 мм

Диаметр отпечатка

твердость НВ

Диаметр отпечатка

твердость НВ

Диаметр отпечатка

твердость НВ

Таблица 2

Твердость по Бринеллю

Твердость НВ

Толщина образца, мм

Соотношение между нагрузкой Р и квадратом диаметра шарика D2

Диаметр шарика D

Выдержка под нагрузкой, с

Таблица 3

Шкалы испытания по Роквеллу

Обозначения

Наконечник

Шкала индикатора для отсчета твердости

Шкалы испытания

Чисел твердости

Алмазный конус

Алмазный конус

Стальной шарик

Стальной шарик

Таблица 4

Толщина образца, мм

Таблица 5

Таблица сопоставления чисел твердости, определяемых различными методами

По Роквеллу

По Шору Н (по склероскопу)

По Бринеллю МН/м2∙10-1

По Роквеллу

По Шору Н (по склероскопу)

По Бринеллю МН/м2∙10-1

Таблица 6

Значения t при данном числе свободы и данной величине вероятности Р

Таблица 7

Соотношение между твердостью и прочностью металлов и сплавов

Материал

Предел прочности МН/м2∙10-1

Предел выносливости σ-1,

Сталь (НВ=125–175)

0,15 НВ (для с=0,2–0,45%)

Сталь (НВ=175–450)

0,12 НВ (для с=0,2–0,8%)

Серый чугун

Дюралюминий

    отожженный

    после закалки и старения

Медь, латунь, бронза

    отожженные

    наклепанные

Цинковые сплавы

Приложение 1

Индивидуальные задания студентам для определения твердости методом Бринелля и Роквелла

В заданиях 1–10. Измерить твердость металла или сплава на приборах Бринелля и Роквелла и сравнить полученные результаты:

№1– техническое железо, №2– алюминий, №3 – медь,

№4 – мягкая сталь, №5– вольфрам, №6 – титан, №7 – сталь 20,

№8 – сталь 45, №9 – сталь У8, №10 – сталь УI2.

В заданиях 11–14. Измерить твердость образцов, имеющих различную толщину сравнить полученные результаты:

№11 – мягкая сталь, №12 – титановый сплав, №13 – медь,

№14 – состаренный дюралюминий.

В заданиях 15–22. Измерить твердость образцов закаленной стали, используя различные нагрузки. Полученные результаты сравнить:

№15 – сталь 45, №16 – сталь 40Х, №17 – сталь Р18, №18 – сталь У7,

№19 – сталь Р9, №20 – сталь У12, №21 – сталь ХВГ, №22 – сталь 9ХС.

В заданиях 23–26, Измерить твердость поверхностного слоя в образцах, подвергнутых различной термообработке:

№23 – закаленная сталь, №24 – цементация + закалка,

№25 – азотирование, №26 – закалка ТВЧ.

№27 – На образце толщиной 3 мм сделать отпечатки шариком 2,5, 5 и 10 мм. Измерить диаметр отпечатка и вычислить твердость, сравнить полученные результаты и объяснить расхождение.

№28 – На образце мягкой стали сделать серию отпечатков на приборе Бринелля, ставя их на расстоянии 0,5 и 4 мм друг от друга. Сравнить полученные значения твердости и объяснить их различие.

№29 – Измерить твердость образца углеродистой стали (отожженной) шариком и конусом. Сравнить полученные результаты.

В заданиях 30–37. Провести испытания твердости НВ в заданных сплавах при нагрузках 187,5; 750; 1000; 1250 и 1500 Н×10 -1 для цветных сплавов и при 750, 1000, 1250, 3000 Н×10 -1 для сталей, чугунов шариком D = 10 мм. Подсчитать твердость для каждой нагрузки Р. Построить логарифмическую зависимость lgP – lgd, определить графическим путем константы d и n в математической зависимости между нагрузкой и твердость. P=ad n

№30 – алюминиевый сплав, №31 – латунь, №32 – медь,

№33 – трансформаторная сталь, №34 – сталь У12, №35 – серый чугун,

№36 – белый чугун, №37– модифицированный чугун.

В заданиях 38–49. В заданном сплаве провести испытания твердости шариками различных диаметров (2,5;5;10 мм при P=const) и сделать вывод о влиянии диаметра шарика на твердость:

№38 – сталь 20, Р=7500 Н, №39 – сталь 45, P=7500 Н,

№40 – сталь У8, Р=7500 Н.

№41 – Провести испытание образца на твердости шариками различных диаметров:2,5, 5 и 10 мм. Нагрузки, требующиеся для получения одинакового значения твердости, подсчитать из равенства P/D 2 = const

№42 – Провести испытание на твердость по Роквеллу различных марок стали: 20, 45, У7, У10, 712 в отожженном состоянии. Сделать вывод о влиянии содержания углерода на твердость стали (построить график HR=φ(%С)).

№43 – Провести испытание по Роквеллу образцов алюминия, стали отожженной и закаленной, выбрав соответствующие инденторы и нагрузки.

№44 – Измерить твердость по Роквеллу трех образцов сплавов системы Рb–Sb с содержанием 5, 20, 50 % Sв. Начертить диаграмму Рb– Sb и по полученным значениям твердости нанести на диаграмме линию, показывающую изменение твердости в зависимости от состава. Объяснить, как связано изменение твердости со структурой сплава.

№45 – В сплавах Сu – Zn содержащих 10, 30 и 42% Zn, выполнить работу, указанную в заданиях №44.

В заданиях 46–49. Измерить твердость двух образцов, один из которых находится в деформированном, а другой – в рекристаллизованном состоянии. Указать, какой образец подвергался рекристаллизации и его примерную температуру. Объяснить, какие изменения в структуре металла в процессе рекристаллизации вызвали изменения твердости. В качестве материала используете: №46 – сталь 20, №47 – .медь, №48 – латунь, №49 – алюминий,

№50 – Образец толщиной 20 мм закален, затем разрушен и со стороны излома зашлифован. Измерить твердость по толщине образца (через каждые 2 мм), построить график в координатах: твердость – расстояние от поверхности образца. Объяснить ход полученной кривой.

№51 – Измерить твердость двух фрез, изготовленных из быстрорежущей стали (измерения вести на зачищенной поверхности).

На основании полученных результатов объяснить, какая из фрез была подвергнута окончательной термообработки, какая еще должна пройти.

№52 – Измерить твердость стали 45, используя шкалы А, В, С и F. Сопоставить полученные значения твердости, предварительно переведя их в числа Бринелля. Объяснить причины расхождения в полученных результатах и какая из шкал в данном случае долина быть применена.

Приложение 2

Индивидуальные задания по измерению, микротвердости

№1 – Измерить микротвердость феррита в стали 20 и перлита в стали У7.

№2 – Измерить микротвердость феррита в стали 30 и перлита в стали У7.

№3 – Измерить микротвердость феррита и перлита в стали 40.

№4 – Измерить микротвердость феррита и перлита в стали 45.

В заданиях №5–8 – Измерить микротвердость феррита и сорбита в стали, подвергнутой отжигу и нормализации:

№5 – сталь 20Х. №6 – сталь 30Х. №7 – сталь 40Х. №8 – сталь 50Х,

В заданиях 9–11. Измерить микротвердость феррита, перлита и структурно-свободных карбидов в сталях, подвергнутых отжигу при t =850° C:

№9 – сталь Р9. №10 – сталь PI8. №11 – сталь ХI2.

В заданиях 12–15. Изучить влияние легирующих элементов на твердость феррита. Образцы подвергают отжигу при температуре 760–780° С.

№12 – сталь 1XI3. №13 – сталь 2X13. №14 – трансформаторная сталь.

№15 – динамная сталь.

№16 – Определить микротвердость структурных составляющих в свинцовистом баббите, содержащем 15% Sb.

№17 – Определить микротвердость фаз в латуни (40% Zn) .

№18 – Сталь 45 подвергнута неполной закалке с температуры 740 o С. Определить твердость феррита и мартенсита.

В заданиях 19–25. Сталь подвернута химико-термической обработке. Определить микротвердость в поверхностном слое и построить график распределения микротвердости по глубине слоя образца подвергнутого:

№19 цементации, №20 цементации и закалке, №21 азотированию,

№22 актированию, №23 борированию.

В заданиях 24–27. Измерить твердость феррита при нагрузках 20, 50, 100 и 200 Н×10 -1 и объяснить различие в микротвердости в следующих марках стали;

№24 – сталь 20, №25– сталь 25, №26 – трансформаторная сталь,

№27 – сталь У8 (для перлита).

Техника безопасности при определении твердости на приборах Бринелля, Роквелла, Виккерса и ПМТ–3

    Соблюдать общие правила безопасности при работе на электроустановках.

    Во избежание падения гирь, применяемых для создания нагрузки, навеска гирь должна осуществляться с чередованием прорезей (поворот на 90° вокруг оси).

    При определении твердости цилиндрических поверхностей применять специальные призматические насадки.

Шатов Юрий Семенович

Горбунов Иван Петрович

Гвоздев Анатолий Григорьевич

ИЗМЕРЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ

Методические указания к лабораторным работам

Твердости измерения твердости , различающихся по характеру... Наибольшее применение получило измерение твердости вдавливанием в испытываемый металл индентора в виде... металлов на твердость по Бринеллю Число твердости по Бринеллю, измеренное ...

  • Строение металлов (1)

    Реферат >> Промышленность, производство

    Фрезы, а также поверхностно-упрочненные детали. Твердость металла определяют спо­собами Бринелля, Роквелла и Виккерса... или деталей определяют различными способами: измерением размеров, взвешиванием образцов и другими методами...

  • Все мы знаем, что каждый материал на земле обладает разными свойствами: физическими, химическими, механическими, технологическими, эксплуатационными и многими другими. Также сюда можно отнести и твердость. Все они вместе позволяют предопределить их применение в той или иной сфере человеческой жизнедеятельности. Но что такое твердость металлов, сплавов или любых других материалов? Среди прочих свойств это наиболее интересно, поскольку нет четкого его определения.

    Что представляет собой твердость?

    Твердость любого материала является его важной характеристикой, поскольку от этого зависит стойкость и долговечность изготавливаемых конструкций. А так как четкого определения нет, то сам термин можно «расшифровать» так - это свойство материала оказывать сопротивление проникновению в него другого тела (инструмента). Эта характеристика позволяет оценить качество многих объектов:

    • металла (сплавы);
    • керамики;
    • древесины;
    • пластика;
    • камня;
    • графита.

    Помимо этого, твердость влияет на степень обработки того или иного материала. То есть чем он тверже, тем труднее с ним работать. Справедливо и обратное. Поэтому с деревом приятно иметь дело при изготовлении различных поделок.

    У разных специалистов свое понятие твердости. К примеру, в области минералогии под этим определением понимается сопротивление одного материала к появлению царапин при воздействии другого объекта.

    В металлургии несколько иначе понимают, что такое твердость - сопротивляемость пластической деформации. Но основное определение, на которое ссылается большинство специалистов любой профессии, уже приведено в самом начале раздела.

    Тем не менее твердость может проявляться по-разному:

    • жесткость;
    • сопротивляемость:
      • царапанию;
      • истиранию;
      • резанию;
    • деформация:
      • изгиб;
      • излом;
      • изменение формы.

    Чем выше величина твердости, тем большая степень сопротивляемости у материала. Исходя из такого многообразия проявления такого свойства, существуют разные способы по его измерению.

    Способы измерения твердости

    Что характерно, испытание на твердость проводится чаще, чем определение всех остальных свойств материалов - прочности, относительного удлинения и прочих. Способов узнать, насколько тверда сталь или любой другой минерал, несколько. Но все они основываются на общем принципе: на испытываемый образец воздействуют другим объектом, прилагая определенное давление. Это может быть шарик, пирамида, пуансон.

    Определение твердости производится по глубине внедрения и показателям давления. Минимальные усилия и большая глубина говорят о низких свойствах материала. Равносильно и наоборот, большие усилия и малая глубина - твердость высокая.

    При этом испытания могут быть двух основных видов:

    • Статические.
    • Динамические.

    Если контакт исследуемого образца и объекта происходит в течение определенного промежутка времени, то испытание носит статичный характер. В ином случае речь идет о динамичном способе определения твердости.

    В настоящее время для определения твердости материалов применяют:

    • Метод Виккерса (ГОСТ 2999-75).
    • Метод Бринелля (ГОСТ 9012-59).
    • Метод Роквелла (ГОСТ 9013-59).
    • Метод Шора.
    • Метод Мооса.

    Выбор того или иного испытания зависит от специфики применения деталей, необходимой точности результата, а также способности воспроизвести исследования при различных условиях.

    Способ Виккерса

    Что такое твердость по Виккерсу? Суть данной методики заключается во вдавливании пирамиды, изготовленной из алмаза, в образец. У пирамидального индентора соотношение сторон должно быть строго определенным. В результате проведения испытания на исследуемом образце остается ромбовидный отпечаток, причем иногда он может быть неправильной формы.

    Твердость обознается двумя латинскими буквами - HV - и устанавливается в зависимости от значения диагонали полученного ромба. Иногда используется среднее арифметическое значение обеих диагоналей.

    Оборудование, с помощью которого измеряется твердость по Виккерсу, относится к статичному типу и может быть стационарным либо переносным. При этом сама процедура выполняется следующим образом:

    • Образец помещается на рабочий стол оборудования исследуемой поверхностью кверху. Затем она вместе со столом поднимается вверх до легкого соприкосновения с рабочим наконечником.
    • При помощи реле времени задается определенный час воздействия, после чего остается опустить рычаг, который приводит в действие нагружающий механизм. По окончании времени испытания нагрузка с детали снимается и наконечник возвращается в прежнее положение.
    • Оборудование оснащено отсчетным микроскопом, поэтому после завершения операции нужно развернуть стол с образцом к нему и измерить диагонали отпечатка.

    В некоторых случаях твердость стали или любого другого материала по данной методике указывается со значением нагрузки. К примеру, такое обозначение HV 50 940 говорит о том, что твердость равна 940 единиц при воздействии нагрузки, равной 50 кг.

    Достоинствами данного способа испытания являются:

    • Можно измерять детали практически с любой толщиной за счет малой площади поверхности, которую занимает индентор (самое крайнее положение).
    • Высокая точность результата, что обусловлено идеальной степенью твердости алмазного наконечника. Как следствие, сам он не подвержен деформации.
    • Диапазон измерений довольно широкий и способен охватывать как относительно непрочные металлы наподобие алюминия и меди, так и высокопрочные стали, сплавы.
    • Есть возможность определения твердости отдельно взятого слоя металлов. К примеру, образец прошел процесс цементации либо у детали изменен химический состав вследствие поверхностного упрочнения или легирования.

    Как показывает практика, диапазон измерений твердости составляет от 145 до 1000 HV. Чтобы измерить твердость большой партии образцов, существует автоматизированное оборудование компании Reicherter из Германии, имеющее гидравлический или электромеханический привод. Расчет результата проводится автоматизировано, после чего выводится на монитор.

    Твердость по Бринеллю

    Твердость по этому методу обозначается тоже двумя, но уже другими буквами - HB - и тоже является статичным испытанием. Температура при исследовании должна быть в пределе 20±10 °С. Его суть в следующем - образец сдавливается стальным закаленным шариком. Также в комплекте к оборудованию имеется еще один шарик, который изготовлен из вольфрамокобальтового твердого сплава. Это позволяет увеличить диапазон измерения твердости.

    Согласно стандарту, определены некоторые условия в отношении того, что такое твердость по Бринеллю:

    • Нагружать образец стоит в пределах от 12,25 до 29420 Н.
    • Размер шариков составляет 1-10 мм.
    • Длительность воздействия не должна превышать 10-15 с.
    • Отпечаток на образце не должен выходит за пределы: 0,2-0,7 D (D - диаметр шарика.)

    Процесс измерения проходит так:

    • Образец помещается на стол и закрепляется по упору.
    • На приводе ставится необходимое значение нагрузки, после чего задействуется шпиндель.
    • По окончании процедуры рабочий наконечник принимает первоначальное положение. На экране можно увидеть стрелочный индикатор, который укажет величину диаметра отпечатка. Сама твердость устанавливается с помощью таблицы, расположенной на станине оборудования. Если необходимо поменять нагрузку, то для этого есть комплект переустанавливаемых штырей.

    Существуют переносные инструменты, которые хорошо использовать в полевых условиях. Они оснащены струбциной, к которой крепится образец, а нагрузка создается рукояткой.

    Рабочий диапазон по измерению твердости сплавов составляет 8-450 HB, что соответствует большинству марок сталей и сплавов, которые используются в производстве разных металлоконструкций. Но стоит только превысить верхний предел измерений, как точность уже не соответствует действительности, что обусловлено деформацией индентора. Не рекомендуется использовать твердосплавные шарики, если ожидаемая твердость 350-450 HB.

    Главным преимуществом метода Бринелля можно считать возможность определять твердость горячих образцов. В то же время нельзя определить ее на кромках или краях деталей либо у тонких образцов.

    Метод Роквелла

    Буквы, обозначающие твердость по Роквеллу, - это HR. При этом методе в образец вдавливается стальной шарик либо алмазный конус.

    Испытание проводится при следующих условиях:

    • Предварительно образец нагружается, что позволяет избежать влияния ряда поверхностных факторов: шероховатость, температура, скорость внедрения индентора.
    • Производится основная нагрузка, по которой проводится расчет результата.
    • Процедура завершается снятием нагрузки.

    Если данный метод сравнивать с предыдущими способами определения твердости, то здесь фигурируют три шкалы.

    • A - обозначается HRA, индентор - алмазный конус, диапазон измерений: 60-80 HRA. Применима к высокоуглеродистым легированным инструментальным сталям, а также твердым сплавам.
    • B - обозначается HRB, индентор - закаленный шарик, диапазон измерений: 35-100 HRB. Это уже стали средней твердости и сплавы цветных металлов.
    • C - обозначается HRC, индентор - алмазный конус, диапазон измерений: 20-90 HRC. Для сталей средней твердости.

    Если речь заходит про специфические условия вычисления твердости, к примеру, холоднокатаная тонколистовая сталь, то используется методика Супер-Роквелла с обозначением твердости HRN и HRT.

    Оборудование тоже может быть как стационарным, так и переносным. При этом первый тип управляется при помощи электромеханического либо гидравлического привода.

    Измерения по Роквеллу проводить сложнее, поскольку необходимо задавать первичную, а потом вторичную скорость перемещения индентора. К тому же алмазный рабочий наконечник имеет форму конуса, что отражается на получении результата. И определить размеры полученного отпечатка здесь гораздо сложнее.

    Твердость по Шору

    Метод Шора обладает главной отличительной чертой. Все описанные выше способы определения твердости металлов и прочих материалов обладали общим недостатком - на поверхности исследуемого образца появляется отпечаток. В этом случае при необходимости испытываемую деталь невозможно обратно установить в узел либо конструкцию. Методика Шора полностью исключает такую деформацию.

    К тому же замер, к примеру, твердости стали, относится уже к испытанию динамического типа, и его суть сводится к следующему. К поверхности исследуемого образца подводится склероскоп (портативный твердомер), внутри которого находится стальной баек с наконечником из алмаза. Твердость определяется так: чем мягче материал, тем меньшим будет расстояние отскока, вследствие поглощения удара самим материалом. А чем тверже образец, тем большим будет отскок.

    Диапазон измерений составляет от 30 до 140 HS. Закаленная высокоуглеродистая сталь соответствует значению 100 HS. А поскольку оборудование не повреждает поверхность изделий, то оно актуально для испытаний тех деталей, которые входят в конструкцию действующего узла или агрегата.

    Методика проста в реализации, оценка производится довольно быстро и деталь можно снова установить в узел. Все это можно считать главными преимуществами. Тем не менее есть некоторые ограничения.

    Шкала твердости HS не имеет стандарта, но есть таблицы и графики, которые позволяют перевести единицы по ШОРу в значения HV, HR или HB. На расстояние отскока бойка влияет такая характеристика, как модуль Юнга. Поэтому невозможно сопоставить единицы HS разных материалов.

    К тому же твердость по ШОРу - это всего лишь сравнительное значение. Вдобавок точность результатов заметно ниже, чем у всех перечисленных выше аналогов.

    Шкала Мооса

    Немецкий ученый Фридрих Моос еще в далеком 1811 году предложил свой способ определения твердости разных материалов. При этом его шкала содержит значения от 1 до 10, что соответствует самым распространенным минералам, начиная с талька (самый мягкий камень) и заканчивая алмазом (самый твердый).

    Сама методика очень проста и основывается на сопротивляемости исследуемого образца царапанию. К примеру, объект B может поцарапать тело C, но никак не воздействует на деталь A. Или, напротив, материал A только слегка царапает деталь B, но может сильно повредить объект C.

    Несмотря на то что способ определения твердости по шкале Мооса был предложен чуть более двух веков назад, он успешно применяется по сей день. Только полученный результат дает далеко не полную информацию, поскольку здесь нет абсолютных значений и невозможно определить соотношение по твердости. Иными словами, нельзя сказать, во сколько раз один из материалов тверже либо мягче другого.

    Эталоны твердости Мооса

    В качестве эталона по определению твердости по методу Мооса берутся эти 10 минералов (далее в скобках будет указан присвоенноезначение):

    1. Тальк.
    2. Гипс.
    3. Кальцит.
    4. Флюорит.
    5. Апатит.
    6. Ортоклаз.
    7. Кварц.
    8. Топаз.
    9. Корунд.
    10. Алмаз.

    Что же представляют собой эти минералы? Опишем их все вкратце ниже.

    Первая пятерка

    Тальк настолько мягок, что можно царапнуть ногтем. Такая же твердость у карандашей (точнее графита). По шкале соответствует единице. Многим людям он хорошо известен, так как из него изготавливается детская присыпка.

    Следующий по твердости - это гипс (2), который тоже легко царапается и имеет особенное свойство. Стоит его измельчить в порошок и смешать с водой - получится пластинчатая масса, которой можно придать любую форму. Помимо белого цвета, есть оригинальные варианты желтого оттенка.

    На третьем месте кальцит не случайно (3). Ногтем его уже не поцарапать, зато это можно сделать медной монетой. Такая же степень твердости у золота и серебра. Его второе название - биоминерал, и именно из него состоят раковины.

    Флюорит по-другому именуется как плавиковый шпат и переводится как «текучий». Ни ногтем, ни монетой он не царапается, чего нельзя сказать про стекло или обычный нож. Его твердость, как можно понять, - 4.

    На пятом месте располагается апатит (5), который еще поддается царапанию при помощи ножа или стекла (такой же характеристикой может похвастать лазурит). При помощи этого минерала добывается фосфор либо фосфорная кислота.

    Вторая пятерка

    Шестым в списке идет ортоклаз, который уже не берет стекло, но напильнику он противостоять не сможет. Для промышленности он ценен как источник для производства электрокерамики и фарфора. Аналогичная твердость у опала, только его нельзя использовать в качестве эталона, поскольку есть много его разновидностей и у всех свои прочностные характеристики.

    На седьмом месте в нашем «рейтинге» свойств твердости располагается всем известный кварц, что соответствует его показателю - 7. Многие знают его как обычный песок. Однако он может быть и в прочих формах: в виде горного хрусталя, агата, аметиста.

    Среди рассмотренных минералов самым твердым является топаз (8). Он с трудом поддается обработке, и в большинстве случаев для этого используется алмаз. Впервые он был обнаружен на острове Топазиос, что расположен в Красном море. Отсюда и пошло его название.

    Корунд вроде бы идентичен по твердости алмазу, тем не менее при помощи других методик были определены его характеристики. И как итог - алмаз гораздо тверже корунда (в 90-180 раз). Рубины и сапфиры тоже приравниваются к этому минералу, а за счет своей твердости он идеально подходит для изготовления абразивных инструментов.

    Замыкает всю десятку алмаз, которому из всех существующих минералов нет равных по части прочности, и его показатель по шкале твердости - заслуженная 10!

    Министерство по образованию и науке РФ

    Государственное образовательное учреждение высшего профессионального образования

    «Красноярский государственный педагогический университет

    им. В.П.Астафьева»

    Филиал в г.Железногорске

    Кафедра Информатики и Технологии

    «Методы определения твёрдости металлов»

    Выполнил:

    Пирожков В.П.

    Проверил:

    асс. Елисеев Д.В.

    г.Железногоск, 2010 г.

      Введение и основные сведения 3

      Измерение твёрдости по Бринеллю 7

      Измерение твёрдости по Виккерсу 10

      Измерение твёрдости по Роквеллу 11

      Твёрдость абразивных материалов 12

      Контроль твёрдости абразивного инструмента 14

      Список используемых источников 15

    ВВЕДЕНИЕ и основные сведения

    Одной из наиболее распространенных характеристик, определяющих качество металлов и сплавов, возможность их применения в различных конструкциях и при различных условиях работы, является твердость. Испытания на твердость производятся чаще, чем определение других механических характеристик металлов: прочности, относительного удлинения и др.

    Твёрдостью материала называют способность оказывать сопротивление механическому проникновению в его поверхностный слой другого твёрдого тела. Твёрдость определяется как величина нагрузки необходимой для начала разрушения материала. Различают относительную и абсолютную твёрдость. Относительная - твёрдость одного материала относительно другого. Является важнейшим диагностическим свойством. Абсолютная, она же инструментальная - измеряется методами вдавливания.

    Твёрдость зависит от:

      Межатомных расстояний.

      Координационного числа - чем выше число, тем выше твёрдость.

      Валентности.

      Природы химической связи

      От направления (например минерал дистен - его твёрдость вдоль кристалла 4, а поперёк - 7)

      Хрупкости и ковкости

      Гибкости - минерал легко гнётся, изгиб не выпрямляется (например, тальк)

      Упругости - минерал сгибается, но выпрямляется (например, слюды)

      Вязкости - минерал трудно сломать (например, жадеит)

      Спайности

    Наиболее твёрдыми из существующих на сегодняшний день материалов являются две аллотропные модификации углерода - лонсдейлит, на 58 % превосходящий по твёрдости алмаз и фуллерит (примерно в 2 раза твёрже алмаза). Однако практическое применение этих веществ пока малораспостранено. Самым твёрдым из распространённых веществ является алмаз.

    Для измерения твёрдости существует несколько шкал (методов измерения):

    Метод Бринелля - твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка (причём площадь отпечатка берётся как площадь части сферы, а не как площадь круга); размерность единиц твердости по Бринеллю кгс/мм². Твёрдость, определённая по этому методу, обозначается HB, где H = hardness (твёрдость, англ.), B - Бринелль;

    Метод Роквелла - твёрдость определяется по относительной глубине вдавливания металлического или алмазного конуса в поверхность тестируемого материала. Твёрдость, определённая по этому методу, является безразмерной и обозначается HR, HRB, HRC и HRA; твёрдость вычисляется по формуле HR = 100 − kd, где d - глубина вдавливания наконечника после снятия основной нагрузки, а k - коэффициент. Таким образом, максимальная твёрдость по Роквеллу соответствует HR 100.

    Метод Виккерса - твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к пирамидке, к площади отпечатка (причём площадь отпечатка берётся как площадь части поверхности пирамиды, а не как площадь ромба); размерность единиц твёрдости по Виккерсу кгс/мм². Твёрдость, определённая по этому методу, обозначается HV;

    Рис.1 Методы определения твёрдости материала.

    а) по Бринеллю; б) по Роквеллу; в) по Виккерсу

    Методы Шора:

    Твёрдость по Шору (Метод вдавливания) - твёрдость определяется по глубине проникновения в материал специальной закаленной стальной иглы (индентора) под действием калиброванной пружины. В данном методе измерения прибор именуется дюрометром. Обычно метод Шора используется для определения твердости низкомодульных материалов (полимеров). Метод Шора, описанный стандартом ASTM D2240, оговаривает 12 шкал измерения. Чаще всего используются варианты A (для мягких материалов) или D (для более твердых). Твёрдость, определённая по этому методу, обозначается буквой используемой шкалы, записываемой после числа с явным указанием метода. В качестве примера, резина в покрышке колеса легкового автомобиля имеет твердость примерно 70A, школьный ластик - примерно 50A;

    Твёрдость по Шору (Метод отскока) - метод определения твёрдости очень твёрдых материалов, преимущественно металлов, по высоте, на которую после удара отскакивает специальный боёк (основная часть склероскопа - измерительного прибора для данного метода), падающий с определённой высоты. Твердость по этому методу Шора оценивается в условных единицах, пропорциональных высоте отскакивания бойка. Обозначается HSx, где H - Hardness, S - Shore и x - латинская буква, обозначающая тип использованной при измерении шкалы.

    Метод Аскер («Аскер» - это название японской компании, производящей измерители твердости - дурометры) - твёрдость определяется по глубине введения стальной полусферы под действием пружины. Используется для мягких резин. По принципу измерения соответствует методу Шора, но отличается формой поверхности щупа. Аскер С использует полусферу диаметром 2.54 мм.

    Метод Кузнецова - Герберта - Ребиндера - твёрдость определяется временем затухания колебаний маятника, опорой которого является исследуемый металл;

    Метод Польди (двойного отпечатка шарика) - твердость оценивается в сравнении с твердостью эталона, испытание производится путем ударного вдавливания стального шарика одновременно в образец и эталон;

    Шкала Мооса - определяется по тому, какой из десяти стандартных минералов царапает тестируемый материал, и какой материал из десяти стандартных минералов царапается тестируемым материалом.

    В России стандартизированы четыре первые шкалы твёрдости. Первые три перечисленных метода относятся к методам вдавливания, методы Шора и Кузнецова - Герберта - Ребиндера - к динамическим методам определения твёрдости. Значения твёрдости, определённые по методам вдавливания, можно пересчитать из одной шкалы в другую. Конкретный способ определения твёрдости выбирается исходя из свойств материала, имеющейся аппаратуры и др.

    Для инструментального определения твёрдости методом вдавливания используются твердомеры. Методы определения твердости, в зависимости от степени воздействия на объект, могут относиться как к неразрушающим, так и к разрущающим методам.

    Механические характеристики связаны между собой, поэтому их конкретные значения могут быть найдены расчётным путём на основе данных о твёрдости с помощью формул, полученных для конкретного материала с определённой термообработкой. Так, например, предел выносливости на изгиб сталей с твёрдостью 180-350 НВ равен примерно 1,8 НВ, с твёрдостью 45-55 HRC - 18 HRC+150, связь предела выносливости с пределом прочности стали описывается соотношениями:

    Конкретным образцам конструкционных материалов, а также выполненным из них изделиям, присуща индивидуальность прочностных и упругих характеристик. Разброс их значений для различных образцов, выполненных из одного и того же материала, обусловлен статистической природой прочности твёрдых тел, различием структур внешне одинаковых образцов. Из-за неопределённости реальных механических характеристик материала, неопределённости некоторых внешних нагрузок, действующих на технический объект, погрешности расчётов для обеспечения безопасной работы проектируемых конструкций должны быть приняты соответствующие проектному этапу обеспечения надёжности меры предосторожности. В качестве такой меры используется понижение в n раз относительно опасного напряжения материала (предела прочности, предела текучести, предела выносливости или предела пропорциональности) величины максимально допускаемых напряжений, используемых в условии прочности. Величина n получила название нормативного коэффициента запаса прочности , который выбирается по таблице или рассчитывается как произведение

    n = n 1 * n 2 * n 3 ,

    где n 1 -учитывает среднюю точность определения напряжений, n 2 -учитывает неопределённость механических характеристик материала, n 3 -учитывает среднюю степень ответственности проектируемой детали.

    Как мы выяснили выше, существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника. Твердость можно измерять вдавливанием индентора (способ вдавливания), ударом или же по отскоку наконечника – шарика. Твердость, определенная царапаньем, характеризует сопротивление разрушению, по отскоку – упругие свойства, вдавливанием сопротивление пластической деформации. В зависимости от скорости приложения нагрузки на индентор твердость различают статическую (нагрузка прикладывается плавно) и динамическую (нагрузка прикладывается ударом).

    Широкое распространение испытаний на твердость объясняется рядом их преимуществ перед другими видами испытаний:

      простота измерений, которые не требуют специального образца и могут быть выполнены непосредственно на проверяемых деталях;

      высокая производительность;

      измерение твердости обычно не влечет за собой разрушения детали, и после измерения ее можно использовать по своему назначению;

      возможность ориентировочно оценить по твердости другие характеристики металла, в первую очередь предел прочности.

    Так, например, зная твердость по Бринеллю (HB), можно определить предел прочности на растяжение (временное сопротивление).

    ,

    где k – коэффициент, зависящий от материала;

    k = 0,34 – сталь HB 120 … 175;

    k = 0,35 – сталь HB 175 … 450;

    k = 0,55 – медь, латунь и бронза отоженные;

    k = 0,33 … 0,36 – алюминий и его сплавы.

    Наибольшее применение получило измерение твердости вдавливанием в испытываемый металл индентора в виде шарика, конуса и пирамиды (соответственно методы Бринелля, Роквелла и Виккерса). В результате вдавливания достаточно большой нагрузкой поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Величина внедрения наконечника в поверхность металла будет тем меньше, чем тверже испытываемый материал.определение сурьмы……………………13 Количественное определение сурьмы…………………17 Методы осаждения... этого, сурьма придаёт типографскому сплаву твёрдость и износостойкость, – весьма важные свойства, если...

  • Физические основы пластичности и прочности металлов (2)

    Реферат >> Физика

    ... (вязкое) разрушение в результате среза Твердость металлов . Твёрдость металлов не является физической постоянной, а представляет... можно пересчитать на число твёрдости по Бринеллю). Выбор метода определения твёрдости зависит от исследуемого...

  • Методы измерения твердости

    Реферат >> Промышленность, производство

    Производятся чаще, чем определение других механических характеристик металлов : прочности, относительного... деформации. Перспективным и высокоточным методом является метод непрерывного вдавливания, при... с. При испытании на твёрдость шаром из карбида вольфрама...

  • Классификация банковских операций (1)

    Задача >> Банковское дело

    И применение 4.Что такое твёрдость металла ? Изложите методы определения твёрдости металла по Бринеллю, Роквеллу 5.Углеродистые... легким движением. 4. Что такое твёрдость металла ? Изложите методы определения твёрдости металла по Бринеллю, Роквеллу. Твердость...